Derivatives of amine containing sugars, such as N-acetylglucosamine and sialic acid, whose Nitrogen are part of more complex functional groups rather than formally being amines, are also considered amino sugars. Aminoglycosides are a class of antimicrobial compounds that inhibit bacterial protein synthesis. These compounds are conjugates of amino sugars and .
Azides give high regioselectivity, however stereoselectivity both at C-1 and C-2 is generally poor. Usually anomeric mixtures will be obtained and the stereochemistry formed at C-2 is heavily dependent upon the starting substrates. For galactal, addition of azide to the double bond will preferentially occur from equatorial direction because of steric hindrance at the top face caused by axial group at C-4. For glucal, azide could attack from both axial and equatorial directions with almost similar probability, so its selectivity will decrease.
Glycals may also be converted into amino sugars by nitration followed by treatment with thiophenol (Michael addition) to furnish a thioglycoside donor. This is a versatile donor and can react with simple or carbohydrate alcohols to establish the glycosidic linkage, with reduction and N-acetylation of nitro group will give the targeted product.
One-pot reactions have also been reported. For instance glycal, activated by thianthrene-5-oxide and Tf2O is treated with an amide nucleophile and a glycosyl acceptor to produce various 1,2-trans C-2-amidoglycosides. Both the C-2 nitrogen introduction and the glycosidic bond formation precede stereoselectively. This methodology makes the introduction of both natural and non-natural amide functionalities at C-2 possible and more importantly with glycosidic bond formation at the same time in a one-pot procedure.
Epoxides are suitable starting materials for realizing nucleophilic displacement reaction to introduce azide into C-2. Anhydrosugar 21 could be transformed into thioglycoside 22, which serves as a donor to react with alcohols to obtain 2-azide-2-deoxy- O-glycosides. The subsequent reduction and N-acetylation will furnish the desired 2- N-acetamido-2-deoxyglycosides.
|
|